

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2013

GCE CHEMISTRY - CH5

SUMMER 2013 MARK SCHEME

Q.1 Name of any commercially/industrially important chlorine containing compound e.g. (a) (sodium) chlorate(I) as bleach/ (sodium) chlorate(V) as weedkiller/ aluminium chloride as catalyst in halogenation [1]

- do not accept CFCs

must be square brackets $K_c = \frac{[HI]^2}{[H_2][I_2]}$ (b) (i) [1]

 $K_c = \frac{0.11^2}{3.11^2} = 1.25 \times 10^{-3}$ follow through error (ft) (ii) [1]

K_c has no units [1] (iii) ft

(iv) when temperature increases K_c increases (1)

> this means equilibrium has moved to RHS / increasing temperature favours endothermic reaction (1)

therefore ΔH for forward reaction is +ve (1) (mark only awarded if marking point 2 given) [3]

- (c) +2 [1] (i)
 - (ii) co-ordinate/ dative (covalent) [1]
 - pink is $[Co(H_2O)_6]^{2+}$ and blue is $[CoCl_4]^{2-}$ (1) (iii)

(ligand is) Cl⁻ (1)

(addition of HCl sends) equilibrium to RHS (1) [3]

 $[Co(H_2O)_6]^{2+}$ shown as octahedral [with attempt at 3D] (1) (iv)

> [CoCl₄]²⁻ shown as tetrahedral/ square planar (1) [2]

> > **Total [14]**

Q.2	(a)	(i)	tangent drawn at t = 40 (1)		
			rate calculated 0.017 to 0.027 (igno	ore units) (1)	[2]
		(ii)	as reaction proceeds less collisions	s (per unit time) occur	[1]
	(b)	(i)	1 st order shown by:		
			calculation of rates at at least 2 cor	ncentrations (1)	
			statement rate α concentration (1)		
		OR			
			constant half-life (1)		
			half-life is 24 minutes (1)		[2]
		(ii)	rate = $k[N_2O_5]$ (1)		[1]
		(iii)	$k = \text{rate (from (i))/ } [N_2O_5] \text{ (from graph) (1)}$ (mark correct numbers – no need to check evaluation)		
			units = minutes ⁻¹ (1)	ft from (ii)	[2]
		(iv)	(student A more likely to be correct rate determining step) reaction is 1^{st} order and $1 [N_2O_5]$ invol	lved in [1]
	(c)	correct curve starting at 100 kPa and becoming horizontal (1)			
		horizontal at 250 kPa (1)		[2]	

Total [11]

© WJEC CBAC Ltd.

Q.3 (a) an acid is a proton / H⁺ donor

[1]

(b) $pH = -log[H^+] / negative log of hydrogen ion concentration$

[1]

(c) a low pH corresponds to a high concentration of H⁺ (1)

a strong acid is totally dissociated whilst a weak acid is partially dissociated (1)

need to consider concentration (of acid solution) as well as strength of the acid (1)

a concentrated solution of a weak acid could have a lower pH than a dilute solution of a strong acid (1) [4]

QWC Accuracy of spelling, punctuation and grammar

QWC [1]

(d) (i) $K_a = \underline{[HCOO^-][H^+]}$ [HCOOH] [1]

(ii) $1.75 \times 10^{-4} = \frac{x^2}{0.1}$ (1)

$$x = 4.183 \times 10^{-3}$$
 (1)

$$pH = 2.38(1)$$

[3]

(e) (i) buffer

[1]

(ii) RCOOH \rightleftharpoons RCOO $^-$ + H $^+$ and RCOONa \rightarrow RCOO $^-$ + Na $^+$ (1)

added H^{+} removed by salt anion/ A^{-} + $H^{+} \rightarrow HA$ (1)

added OH removed by acid/OH + HA \rightarrow A + H₂O (1)

Total [15]

[3]

Q.4 (a) diagram with labels to show

H₂/H⁺ shown in electrode (1)

platinum (in both electrodes) (1)

 $Fe^{2+}(aq)$ and $Fe^{3+}(aq)$ (1)

high resistance voltmeter (1)

salt bridge (1)

gas at 1atm pressure, solutions of concentration 1 mol dm⁻³, temperature 298K (1)

[any 5]

(b) (i) successive ionisation energies increase gradually/ the energies of the d orbitals are similar [1]

(ii) $1s^22s^22p^63s^23p^64s^23d^{10}/3d^{10}4s^2$ [1]

(iii) after 4s electrons lost 3d is full/ stable/ d electrons ionisation energy very high [1]

(c) (i) violet solution contains V^{2+} (1)

SEP Zn²⁺/ Zn is more negative than VO_3^-/VO^{2+} and VO^{2+}/V^{3+} and therefore releases electrons/ VO_3^-/VO^{2+} and VO^{2+}/V^{3+} are more positive than Zn^{2+}/Zn and are stronger oxidising agents (1)

 V^{2+} cannot be reduced (to V) since SEP is more negative than Zn^{2+}/Zn (1) [3]

(ii) 1.1V (ignore sign) [1]

(iii) $Zn(s) \rightarrow Zn^{2+}(aq) + 2e / Zn(s) \rightleftharpoons Zn^{2+}(aq) + 2e$ with some indication of direction [1]

(iv) if Zn²⁺(aq) concentration increased equilibrium moves to LHS (1) so electrode potential becomes less negative (1) [2]

(d) (i) 2.74×10^{-3} (mol) [1]

 $M_r KIO_3 = 214.1$

(iii)

- (ii) 1.37×10^{-3} (mol) [1]
- moles $KIO_3 = 0.978/214.1 = 4.57 \times 10^{-3}$ in 250 cm³ 4.57 × 10⁻⁴ in 25 cm³ [1]
- (iv) $1.37 \times 10^{-3}/4.57 \times 10^{-4} = 3$ (1)
 - equation 1 is correct since 3 moles of iodine formed (mark awarded for reason) (1) [2]

 Total [20]

Q.5 atomisation of magnesium / vaporisation of magnesium [1] (a) (i) (ii) increased ratio positive charge on nucleus: number of electrons [1] (iii) is positive because the (negative) electron is repelled by negative species [1] (iv) lattice enthalpy is –3835(kJ mol⁻¹) numerical value (1) negative sign (1) [2] gases are more random/ have more disorder / move more freely and therefore have a (b) (i) higher entropy [1] $\Delta S = 21.8 (JK^{-1}mol^{-1})$ (ii) [1] (iii) $\Delta G = \Delta H - T\Delta S (1)$ ft from (ii) ΔG must be –ve if reaction to be spontaneous/ to calculate T make $\Delta G = 0$ (1) 0 = 318000 - T 21.8 T = 14587/14600 (K) (1)[3] (c) use of aqueous sodium hydroxide (1) white precipitate for all possible ions (1) excess aqueous sodium hydroxide – precipitate dissolves for Pb2+ and Al3+ (1) use of aqueous (potassium) iodide/ hydrochloric acid/ sulfuric acid / soluble chloride/ soluble sulfate (1) result – yellow ppt for Pb²⁺ + I⁻ and no ppt for Al³⁺ / white ppt for Pb²⁺ + Cl⁻ or SO₄²⁻ and no ppt for Al³⁺ [result for both needed] (1) [5] QWC Organisation of information clear and coherent (1) Use of specialist vocabulary (1) QWC [2] (d) (i) diagram to show central Al, 4 Cl and 4 shared pairs of electrons, all CI outer electrons, dative pair identifiable [1] (ii) chlorination of benzene (1) produces CI⁺ as electrophile (1) OR gives ionic liquids (1) with low vapour pressure/ non-volatile/ do not evaporate in use (1)

Total [20]

[2]

OR catalyst (1) in polymerisation of alkenes (1)